New discoveries, technologies and approaches have revolutionized personalized medicine.

Our scientists are at the vanguard of this revolution.

Research Institute of the McGill University Health Centre (RI-MUHC)
Contents

2 About This Report
4 Messages from Bruce Mazer and Indra Gupta
5 Message from Peter Kruyt and Pierre Gfeller
5 Message from David Eidelman and Martha Crago

6 Drivers of Personalized Medicine

10 COVID-19: Our Researchers Answer the Call

14 Year in Review: Programs and Publications
22 Focus on Our Research Trainees
23 Business Development Activities

24 Salary Awards
25 Awards and Recognition
26 Leading-edge Research Resources
27 Oversight
28 Funding Summary
30 Your Support
Statistics
Represent fiscal year 2020 (April 1, 2019 to March 31, 2020), unless indicated otherwise.

Research funds
Grants, contracts (including indirect costs), studentships, salary awards from peer-reviewed agencies, and funding from university and hospital foundations. Administered at either the RI-MUHC or McGill University, for RI-MUHC researchers.

Researchers
Individuals conducting active and independent research, who have received at least $5,000 in research funding during the fiscal year.

Staff
Administrative and research staff based at MUHC locations.

Publications
Selected from July 2019 to June 2020.

Counts
Active researchers are counted as of May 2020. Research trainees are counted as of July 2019. Staff are counted as of April 2020. Excludes researchers and trainees as well as staff located at the Montreal Neurological Institute and McGill Campus.

Images
The RI-MUHC respects public health guidelines to reduce transmission of COVID-19. Some images in this report were taken prior to the pandemic.
458 active members, including fundamental, clinical and evaluative researchers

1,195 research trainees, including 378 M.Sc. and 453 PhD candidates, 214 postdocs and 150 clinical research fellows

1,209 staff in research and administration

Over 1,900 peer-reviewed scientific publications

Over 2,000 scientific talks given by our researchers worldwide

32,563 square metres of research space

408 research contracts and 725 agreements signed

28 invention disclosures

Ongoing research collaborations with 61 countries
There is no doubt that 2019-2020 was a year filled with challenges and achievements. Our research community is unique: dedicated, creative, forward-thinking and innovative. Child or adult, every patient who inspires our work at the Research Institute of the McGill University Health Centre (RI-MUHC) is unique, too, and deserves to benefit from exciting new targeted therapies.

Whether it is for landmark public health studies, understanding the implications of a new disease-causing gene in a single patient or family, planning for a bold new Clinical Innovation Platform, or our robust response to the COVID-19 pandemic, we may take tremendous pride in the successes of the past year. In our community of RI-MUHC researchers, trainees and staff, MUHC clinicians and patients, and committed funding partners, we are all drivers of personalized medicine.

As we adapt to the challenging constraints of the pandemic, science has prevailed at the speed of light with landmark pediatric studies in COVID-19 research and innovative therapies in mental health for our most vulnerable and youngest patients. Our pediatric research community quickly demonstrated strength in these and other areas requiring multidisciplinary collaboration. This would not have been possible without the invaluable partnership of the Montreal Children’s Hospital Foundation, whose support safeguards the continuity of our research advancement and shaping of future scientists in child health research.

My sincerest gratitude to Dr. Bruce Mazer, whose leadership over the last four years has established the RI-MUHC on the global centre stage, and whose extraordinary steering efforts have sustained the acceleration of pivotal research during these precarious times.
We are pleased to recognize the accomplishments of the Research Institute of the McGill University Health Centre (RI-MUHC) in the context of this annual report, and to thank researchers, trainees, management and support staff alike for their curiosity, fervour and focus.

As a subsidiary of the MUHC, the success of the RI-MUHC is intertwined with that of the MUHC. Together, we eye the future to change the present. We pivot to adapt to new realities and anticipate other needs. This is why leadership and sustained support are critical. In that regard, we would like to express particular gratitude to Dr. Bruce Mazer as outgoing Interim Executive Director and Chief Scientific Officer. His enthusiastic and extended service has helped the RI-MUHC address opportunities and challenges over the last four years, including those related to personalized medicine and the COVID-19 pandemic. We would also like to express gratitude to the RI-MUHC’s teams, partners, funders, and supporters for acting collaboratively with purpose to achieve common goals. We look forward to many more impressive achievements in the year ahead.

COVID-19 has taught us that in the face of a global health crisis, collaboration is paramount. At the outset of the pandemic, many McGill and RI-MUHC scientists whose research was abruptly interrupted turned on a dime to collectively fight the novel virus.

Of course, collaboration between our institutions is not new. The pioneering genetic research conducted in RI-MUHC and McGill labs offered the earliest glimpses of where we were heading: personalized medicine, which hailed the next frontier in medical research. Today, genetic testing leads to targeted cancer regimens, which improve outcomes in ways the first oncologists could never have imagined.

We now use personalized medicine to treat an increasingly broad array of cancers, as well as for cardiovascular disease, microbiome research and more.

We offer our RI-MUHC colleagues a heartfelt thank-you for their leadership and contributions in fighting the pandemic. Congratulations on the advances achieved this year, be they COVID-19-related or in any of the other areas in which you excel.
Drivers of personalized medicine

Physicians, over the course of medical history, have considered a range of individual factors in determining how to treat afflictions. But new discoveries, technologies and approaches have revolutionized personalized medicine, and scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) are at the vanguard of this revolution. Their investigations are leading to greater understanding of our unique bodies, and how best to keep us healthy.

Through this small sampling of their work, discover why our researchers are committed to driving personalized medicine.

Ensuring mobility: the “Hip-Mobile”

Hip fractures in elderly patients result in a loss of mobility that diminishes their overall health and well-being. Dr. Suzanne Morin, of the Metabolic Disorders and Complications Program, is committed to finding ways to ensure patients recover from their fractures and don’t suffer a second one. She and her team have developed and are testing a new rehabilitation technology: the “Hip-Mobile,” a “smart” insole that patients insert in their shoe. Patients agreeing to participate in an extended rehabilitation project are given initial training and then monitored over an eight-month period by the smart insole, which communicates with a tablet via Bluetooth. These results are linked to Dr. Morin’s lab, allowing her to track the frequency and quality of the patient’s rehabilitation and to adjust the program as necessary.

“This approach provides the patient with a personalized rehabilitation program remotely. They benefit from staying in their own home and receiving simple coaching through the program on their tablet,” says Dr. Morin. “There are inevitable challenges in using new technology with the very elderly, but people as old as 98 have successfully completed the program.”

Dr. Suzanne Morin developed a personalized rehabilitation program

Dr. Morin’s extended study is providing additional insights. “As participants become more mobile, their perceptions of their health and their abilities change significantly. So, in addition to providing rehab, we are acquiring information about their general strength and mobility, and even their mood,” she says. “We want this approach to translate into better clinical outcomes because as we age, even small differences can make a big change in our ability to do the things we enjoy.”
Introducing your microbial self

Irah King’s research addresses how the microbiome affects the immune system and how that may relate to such autoimmune diseases as psoriasis, inflammatory bowel disease, or even respiratory disease. “The gut holds the most microbial species and the most immune cells, creating an intimate relationship between the two. The microbiome may influence the immune system, which may then influence disease,” he says. “We want to understand how a given treatment will interact with both your genetic and your ‘microbial’ self.”

Your microbiome, the accumulation of microbes living in and on the body, creates your unique “microbial self.” The better you know this self, the better you can understand certain health issues.

“This microbiome can be beneficial or detrimental to human health, depending on its composition,” says Irah King (PhD) of the Transitional Research in Respiratory Diseases Program. “It can predispose you to a condition that may be dictated by a genetic difference, or you can have a genetic predisposition which might alter the microbiome and therefore lead to a different state of health.”

WHY A GNOTOBIOTIC RESEARCH PLATFORM?

Irah King is the director of the RI-MUHC’s new Gnotobiotic Research Platform, a resource for the study of animal models, primarily mice, that have an identical genetic make-up and are either microbe-free or have a known, controlled microbial composition. The facility, to be opened in the coming year, will enable researchers to control and assess the relationship between genetics and microbiomes. “We will be able to manipulate the microbiota while everything else remains the same,” says King. “Then we can focus on causation rather than simply on identifying correlation.”
Tapping the inexhaustible capacity of liquid biopsies

Tumour biopsies for diagnosing cancer and monitoring treatment usually involve removing a tissue sample, but that process collects material from a small portion of the tumour with no guarantee that it bears the most important information. Conversely, liquid biopsies through blood tests allow the physician to collect material from the entire tumour in a timely and considerably less intrusive manner than in traditional biopsy.

Cells release extracellular vesicles into the blood at a regular rate. These vesicles—in particular, exosomes—mediate intercellular communication and carry cargo such as proteins or nucleic acids. Cancer cells also release unique exosomes, each one being representative of the cell from which it came.

“Exosomes enter into the blood from every cell in the tumour, so with sufficiently sensitive detection methods, we can track mutations within the cancer, giving these exosomes diagnostic potential,” says Dr. Janusz Rak, senior scientist in the Child Health and Human Development Program. “We’re reaching the point in the molecular characterization of cancers where these features could be used for making clinical decisions.”

Research is exploring how to understand the information deposited into the bloodstream by the cancer. “We’re identifying ‘signatures’ in this genetic information so we can determine what a tumour is doing,” says Dr. Peter Metrakos, leader of the Cancer Research Program. “If mutations go down, we would know our treatment is working.”

A VISION FOR APPLIED NANOMEDICINE

Drs. Rak and Metrakos are co-leads on a Canada Foundation for Innovation application to establish a Centre for Applied Nanomedicine at the RI-MUHC. “This facility would support our research into these vesicles in diagnostic and other contexts,” says Dr. Rak. “Liquid biopsies have an inexhaustible capacity to reflect this ever-changing malignant disease that affects people.”
Investigating genetic profiles for cancer patients

It has long been known that genetic make-up affects one’s risk of cancer. For instance, while less than one percent of women will develop ovarian cancer, those carrying a particular mutation have a risk of forty to sixty percent. It is important for both the individual and physician to know each patient’s genetic makeup and select the best therapy.

Enter Oncodrive, a project led by Patricia Tonin (PhD), associate leader of the Cancer Research Program, who has been involved in the discovery of several genetic mutations that predict the likelihood of developing the disease. “Oncodrive aims to improve the management of cancer patients by deriving the individual’s entire genetic sequence,” she explains. “Many genetic mutations measurably affect risk, and that information should be provided to people with those mutations and to their physicians. As well, certain genetic mutations can affect a patient’s response to specific therapies, which then influences the choice of treatment.”

Through Oncodrive databases, physicians will have access to the patient’s genetic profile and be able to adapt treatment appropriately, applying more aggressive therapies for patients whose genes suggest they will be subject to aggressive cancers. Researchers will also draw on the database to identify other mutations that could contribute to a patient’s chances of developing cancer.

STARTING WITH MUHC BREAST CANCER PATIENTS

Oncodrive will initially focus on collecting genetic information from breast cancer patients at the MUHC. “Women with breast cancer tend to be aware of the role of genetic mutations and the uses of genetic testing, and are probably more ready to look at the rest of the genome to see what other factors could be contributing to their risk or affecting their treatment,” says Patricia Tonin.
The coronavirus binds to human cells using what is called a "spike" protein, which creates a means for the virus to enter human cells. Researchers around the world are working to develop a vaccine that will interfere with this spike protein, prohibiting the virus from binding.

Momar Ndao (DVM, PhD), Martin Olivier (PhD) and Michael Reed (PhD), colleagues in the Infectious Diseases and Immunity in Global Health Program, are developing a novel approach to obstruct this protein. They lead an effort to explore the use of both the current tuberculosis vaccine and an adenoviral vaccine—already in clinical trials for human use—that was developed to combat Ebola, malaria and the human immunodeficiency viruses. They are studying whether these vaccines, either alone or in combination, can be used to deliver the COVID-19 spike protein and generate a sustained immune response that effectively blocks the coronavirus from attaching to and entering human cells, thereby preventing disease.

“When with vaccines already approved for human use, we don’t need to wait as long for regulatory approval,” says Dr. Ndao. ✑

Funding: MUHC Foundation and partners (MI4 ECRF)
Testing hydroxychloroquine

In March 2020 Drs. Todd C. Lee, Emily G. McDonald and Matthew P. Cheng, members of the Infectious Diseases and Immunity in Global Health Program, launched a clinical study coordinated with another in Minnesota, U.S., to explore the potential of hydroxychloroquine in different contexts. Their first trial focused on post-exposure prophylaxis—preventing infection if someone had been exposed—and their second on whether early community treatment improved disease outcome. These were the first randomized controlled trials for COVID-19 to recruit patients in Canada, and the first completed.

“Despite a lot of excitement and promise for the drug, we found that hydroxychloroquine does not seem to be effective as either post-exposure prophylaxis or to reduce symptoms in early disease,” says Dr. McDonald.

Dr. Lee adds, “We’re still pooling data with international trials to see if there were fewer hospitalizations for those who received early treatment, but it may be time to move on to evaluate other candidate drugs.”

Funding: MUHC Foundation (MI4 ECRF) and MUHC Clinical Practice Assessment Unit

Cardiac conditions and the coronavirus

Dr. Abhinav Sharma of the Cardiovascular Health Across the Lifespan Program is concerned with management of cardiac conditions during the pandemic. “There is controversy around the use of commonly used blood pressure medications, specifically angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB),” he explains. “The COVID-19 virus needs the protein that these drugs bind to in order to enter the cells.”

One hypothesis suggests that people on these medications could experience a more severe infection. Another proposes that these medications may be beneficial, reducing inflammation and fibrosis. Dr. Sharma is studying the effect of withdrawing ACE inhibitors to learn how that impacts patients hospitalized with COVID-19. “Our study will determine if temporarily withholding these blood pressure medications is safe and improves patient outcomes,” he says.

Funding: MUHC Foundation (MI4 ECRF) and MUHC Division of Cardiology
Tracking international approaches to COVID-19

Dr. David Buckeridge, a researcher in the Metabolic Disorders and Complications Program, is designing new methods of using artificial intelligence to survey online media. He aims to understand which countries are implementing which kind of control measures, when they’re doing it, and how people and communities are reacting to it.

“We use online media to build portraits of how countries are controlling the pandemic around the world,” says Dr. Buckeridge, “and then we try and tie in more traditional data around numbers of cases and deaths to see to what extent those efforts are having an effect.”

His study aims not only to identify clear differences and patterns regarding approaches used around the world, but also to track popular reactions to those approaches and issues at the forefront in the media.

Funding: The Canadian 2019 Novel COVID-19 Rapid Research Funding Opportunity

Made-in-Canada COVID-19 tests

When COVID-19 hit Canada, most testing kits were made by multinational corporations without obligation to meet Canadian needs. Old hockey buddies Don van Meyel (PhD) of the Brain Repair and Integrative Neuroscience Program and Martin Schmeing (PhD), a biochemistry professor at McGill University, led a team of talented McGill researchers to produce COVID-19 testing kits for which all essential test components were made in Canada.

A pilot project to deliver 15,000 tests to Optilab MUHC served as proof of concept, and collaboration with scientists at the National Research Council is enabling scale-up to produce millions of tests.

“We want to be able to produce and distribute these tests nationwide when they are needed,” says Don van Meyel, who directs the Centre for Translational Biology at the RI-MUHC. “Decisions about who and when to test in Canada should be driven by strong science and public health policy, not by limitations in the number of tests available.”

Funding: MUHC Foundation (MI4 ECRF), McGill Faculty of Science, National Research Council of Canada, Innovation Science and Economic Development Canada
Supporting healthcare workers

Healthcare professionals have found themselves under tremendous pressure during the COVID-19 pandemic. Jason Harley (PhD) of the Injury Repair Recovery Program and Tina Montreuil (PhD, PsyD) of the Child Health and Human Development Program have developed a survey of the support and coping strategies that healthcare professionals are using, in order to help inform hospital networks and promote practices that would best support these workers. “That means having a better understanding of the stressors and the psychological distress that healthcare professionals are experiencing,” says Jason Harley.

The pair aims to shed light on issues of physical and emotional exhaustion and high absenteeism among healthcare workers. “The idea is to gain greater insight into what is really going on in the system so that we’re better able to support the hospitals and their workers,” adds Tina Montreuil.

Funding: MUHC Foundation and partners (MI4 ECRF)

First UV-disinfection robot tested in Canada

Like the researchers they support, many RI-MUHC administrative staff took initiative in the pandemic. Notably, our biomedical engineering and environmental health and safety teams worked with MUHC housekeeping and infection control on novel methods of disinfection.

When Rami Tohme, director of Infrastructure and Biomedical Engineering (RI-MUHC), came across a robot that disinfects using ultraviolet light at a medical show in Germany, he saw it as a technology that could help hospitals at home lower their infection rates. Dr. Bruce Mazer (Translational Research in Respiratory Diseases Program) agreed, and invited his team to help in the first evaluation of this robot inside a Canadian hospital.

“Our job was not to highlight its capacity for disinfection, because that’s already proven,” says Rami Tohme. “We wanted to test its capability to disinfect without human intervention.” The evaluation teams delivered a thumbs-up for the acquisition of two robots at the RI-MUHC.
Managing concussions with just a few clicks

• With an industry partner, Elaine De Guise (PhD) developed a free mobile app to fill the information gap on mild traumatic brain injury for emergency care professionals
• Topics range from diagnosis to resumption of daily activities

How epilepsy arises in the healthy brain

• A study in rodents used laser light to target populations of brain cells and investigate their contributions to seizures
• First author: Elvis Cela (PhD), then doctoral student; senior author: Per Jesper Sjöström (PhD), Scientific Reports

SELECTED PUBLICATIONS

Cristian Zaelzer-Perez (PhD) is co-recipient of the 2019 Science Education Award (SfN) and 2020 CAN Neuroscience Outreach & Advocacy Award
• He founded the Convergence: Perceptions of Neuroscience Initiative to engage the public on the crossover between neuroscience and art.
High-fat diet fuels prostate cancer progression by mimicking key cancer alteration

- New study suggests that dietary intervention to reduce fat consumption could improve prostate cancer outcome
- David Labbé (PhD) is study co-lead (Nature Communications)
- His team demonstrated that saturated fat intake induces a cellular reprogramming that drives prostate cancer progression and lethality

Estrogen induces liver metastasis immune tolerance in females

- Reported in Nature Communications by Pnina Brodt (PhD) and team, this study may explain why female sex and liver metastases predict a poorer response to immunotherapy
- Study provides a rationale to explore the potential of anti-estrogens as treatment for hormone-independent cancers that metastasize to the liver

SELECTED PUBLICATIONS

Pnina Brodt, PhD (centre), and team
Cardiovascular Health Across the Lifespan Program (CHAL)

RESEARCH HIGHLIGHTS

Radiation therapy to treat broken hearts
- MUHC cardiologists and radiation oncologists can treat patients with severe arrhythmias using precise radiotherapy, targeting abnormal parts of the heart
- Dr. Martin Bernier leads study gathering data on this innovative technique

New targets for treatment of valve disease
- Identification of new genes (FADS1/2) involved in aortic stenosis will lead to new treatments and provide options to surgery
- Jamie Engert (PhD) and Dr. George Thanassouls lead this study (JAMA Cardiology)

Advancing heart imaging research with Canada’s most sophisticated MRI
- New cardiac magnetic resonance imaging equipment allows us to develop methods that make cardiovascular diagnostic workups faster, safer and more accurate (see p. 30)
- Dr. Matthias Friedrich leads Cardiovascular Imaging Core at the MUHC.

SELECTED PUBLICATIONS

Child Health and Human Development Program (CHHD)

RESEARCH HIGHLIGHTS

Toward better care for diabetic children
- Dr. Meranda Nakhla and colleagues revealed shortfalls in diagnosis of type 1 diabetes in Quebec children, barriers in transition from pediatric to adult care, and mental health problems that follow young diabetic patients

Genomic technologies empower cancer research
- Dr. Nada Jabado co-led a Nature study that used single-cell sequencing to reveal early origins of childhood brain cancer
- With RI-MUHC and international colleagues, she also identified a potential target for immunotherapy treatments

Pilot study for gene therapy offers hope
- Dr. John Mitchell enrolled the first Canadian patient in a clinical trial using gene therapy to treat a rare metabolic disease, Glycogen storage disease type I.

SELECTED PUBLICATIONS

YEAR IN REVIEW

MuHC patient Samuel Gauthier, Dr. John Mitchell and team
Metabolic Disorders and Complications Program (MeDiC)

RESEARCH HIGHLIGHTS

New criteria for diagnosing sarcopenia
• Stéphanie Chevalier (RD, PhD) and doctoral student Anne-Julie Tessier, with Dr. Simon Wing, Elham Rahme (PhD) and Dr. José Morais, developed a tool that provides health professionals with a standard to diagnose sarcopenia and implement prevention strategies to delay its effects.

Mitigation of the risk of kidney transplant loss
• Dr. Ruth Sapir-Pichhadze and colleagues including Dr. Bethany Foster, Child Health and Human Development Program, demonstrated that donor-recipient matching for specific features of HLA genes would be a useful strategy to decrease kidney transplant failures.

SELECTED PUBLICATIONS

Overcoming resistance in malignant brain tumours
• Bertrand Jean-Claude (PhD) and colleagues, including study lead Siham Sabri (PhD) of the Cancer Research Program, demonstrated the anti-tumour activity of a combi-molecule to overcome resistance of glioblastoma stem cells to DNA-damaging chemotherapy.
RESEARCH HIGHLIGHTS

Montréal sans HépC
- Dr. Marina Klein co-led initiative to make Montreal the first city in North America to eliminate hepatitis C, partnered with CR-CHUM and Lady Davis Research Institute
- Community-oriented approach involves frontline workers

Sepsis: Test before starting treatment
- Drs. Matthew Cheng and Cédric Yansouni, with UBC and Harvard Medical School collaborators, confirmed the importance of obtaining blood cultures before giving antibiotics to septic patients
- Increases likelihood of identifying a pathogen and providing targeted treatment (Annals of Internal Medicine)

New family of enzymes identified in fungal infections
- Dr. Don Sheppard with Lynne Howell (PhD), University of Toronto, identified an enzyme critical for biofilm formation in the fungus Aspergillus fumigatus
- Co-first author (Nature Communications): postdoc François Le Mauff (PhD).

SELECTED PUBLICATIONS

SELECTED PUBLICATIONS

RESEARCH HIGHLIGHTS

All eyes on the Clinical Innovation Platform!

- Ideally located at the Montreal General Hospital of the MUHC, the Clinical Innovation Platform (CLIP) opens its doors to health tech startups in fall 2020
- Collaborative workspaces, modern labs and training will help propel start-ups and commercialize their innovations
- Generating buzz in the medtech industry, the CLIP provides access to mentorship from industry experts, pre-clinical/clinical trial services, rapid prototyping and more. (See p. 26)

Better guidelines for patients with gastrointestinal bleeding

- Dr. Alan Barkun, with Dr. Marc Bardou (Dijon-Bourgogne University Hospital, France), led a group of international experts to develop new guidelines published in *Annals of Internal Medicine*
- Better management of patients with nonvariceal upper gastrointestinal bleeding could reduce pressures in the ER.

Dr. Alan Barkun

Injury Repair Recovery Program (IRR)

YEAR IN REVIEW

rimuhc.ca/IRR

All eyes on the Clinical Innovation Platform!

- Ideally located at the Montreal General Hospital of the MUHC, the Clinical Innovation Platform (CLIP) opens its doors to health tech startups in fall 2020
- Collaborative workspaces, modern labs and training will help propel start-ups and commercialize their innovations
- Generating buzz in the medtech industry, the CLIP provides access to mentorship from industry experts, pre-clinical/clinical trial services, rapid prototyping and more. (See p. 26)

The CLIP: Developing health technology products that meet patient needs

Better guidelines for patients with gastrointestinal bleeding

- Dr. Alan Barkun, with Dr. Marc Bardou (Dijon-Bourgogne University Hospital, France), led a group of international experts to develop new guidelines published in *Annals of Internal Medicine*
- Better management of patients with nonvariceal upper gastrointestinal bleeding could reduce pressures in the ER.

Birds eye view of the Clinical Innovation Platform (CLIP)

Injury Repair Recovery Program (IRR)

YEAR IN REVIEW

rimuhc.ca/IRR

All eyes on the Clinical Innovation Platform!

- Ideally located at the Montreal General Hospital of the MUHC, the Clinical Innovation Platform (CLIP) opens its doors to health tech startups in fall 2020
- Collaborative workspaces, modern labs and training will help propel start-ups and commercialize their innovations
- Generating buzz in the medtech industry, the CLIP provides access to mentorship from industry experts, pre-clinical/clinical trial services, rapid prototyping and more. (See p. 26)

The CLIP: Developing health technology products that meet patient needs

Better guidelines for patients with gastrointestinal bleeding

- Dr. Alan Barkun, with Dr. Marc Bardou (Dijon-Bourgogne University Hospital, France), led a group of international experts to develop new guidelines published in *Annals of Internal Medicine*
- Better management of patients with nonvariceal upper gastrointestinal bleeding could reduce pressures in the ER.
RESEARCH HIGHLIGHTS

Changing the way latent tuberculosis is treated
• New study shows that a rifampin regimen is not only safer, shorter, and as effective as standard isoniazid treatment, but also cheaper
• Dr. Dick Menzies is last study author (Ann Intern Med.)

Why some non-smokers get COPD
• Dysanapsis, a developmental mismatch between airway and lung size, was proved a yet stronger risk factor for chronic obstructive pulmonary disease (COPD) than smoking
• Dr. Benjamin Smith is first study author (JAMA)

Understanding the hallmarks of asthma
• Researchers demonstrated that intrapulmonary airway smooth muscle is hypercontractile in asthma and identified several proteins that could be targeted for treatment
• Anne-Marie Lauzon (PhD) is last study author (Eur Respir J.).

SELECTED PUBLICATIONS

What is our new generation of researchers achieving today?

Cooperathon Grand Prize winners invent a prototype that could reduce the impact of heart disease worldwide

Capturing the 2019 Cooperathon grand prize of $65,000 in start-up funding, an RI-MUHC-trained team beat 250 others with their PLAKK prototype, using artificial intelligence to help reduce heart attacks and strokes. Kashif Khan and Karina Gasbarrino trained at the doctoral level in the Cardiovascular Health Across the Lifespan Program at the RI-MUHC. Entrepreneur Nicolas Bent spent time in the Brain Repair and Integrated Neuroscience Program.

First-prize presentation at Diabetes Canada Conference

Nancy Wu, a trainee in the Metabolic Disorders and Complications Program, won first prize for her oral presentation at the 2019 Diabetes Canada Professional Conference. Part of her work for an M.Sc. in epidemiology, the study proposes to identify the most important outcomes to measure in a program that aims to prevent diabetes development in women who have glucose intolerance during their pregnancy.

Harnessing the potential of emerging technology applications

Audrey Kapelanski-Lamoureux, doctoral student in the Cancer Research Program, completed an Artificial Intelligence for Genomics program offered by the District 3 Innovation Centre at Concordia University. Taking second place for their project, her team developed a deep learning approach to improve the predictive value of a clinical meta-dataset.

We thank Desjardins for generous support in enhancing career development opportunities for our trainees.
Precision screening tool for early diagnosis of ovarian and endometrial cancers developed through innovative partnerships

Together, ovarian and endometrial cancers represent the fourth leading cause of cancer-related deaths among Canadian women. Although more than 80% of these patients can be cured if their cancer is detected early, most women are only diagnosed after the cancer has spread throughout the body—at which point it is incurable. This devastating reality persists because available screening techniques lack the sensitivity and specificity to diagnose these cancers in the early stages of the disease. To combat the evasive nature of these cancers, Dr. Lucy Gilbert (Cancer Research Program) and her team have developed an innovative diagnostic tool that is redefining the way we detect ovarian and endometrial cancers.

A clinician-scientist and director of the Women’s Health Research Unit at the McGill University Health Centre (MUHC), Dr. Gilbert spearheaded the development of a first-in-kind precision Pap test called D0vEEgene that is capable of “Detecting Ovarian and Endometrial Cancer Early using genomics.” To accomplish this remarkable feat, D0vEEgene evaluates a panel of specific genetic mutations that occur in the early stages of ovarian and endometrial cancers.

To transition D0vEEgene from the research laboratory into a clinical-grade diagnostic test, Dr. Gilbert worked in close collaboration with the RI-MUHC Business Development Office team directed by Costas Karatzas (PhD) and with Julie Quenneville, President and CEO of the MUHC Foundation, to establish scientific networks, commercial partnerships and secure financing. Through these interactions, Dr. Gilbert, in partnership with Optilab-MUHC and the launch of a $2 million campaign by the MUHC Foundation, was recently awarded a prestigious $6.24 million grant from Genome Canada’s Genomic Applications Partnership Program (GAPP). This funding will enable the bench-to-bedside transition of D0vEEgene into gynecology clinics, bringing D0vEEgene one step closer to saving the lives of thousands of women worldwide.
Salary awards

FONDS DE RECHERCHE DU QUÉBEC-SANTÉ

RESEARCH CHAIRS
Nada Jabado
Edward Ruthazer
Donald Sheppard

RESEARCH SCHOLARS
Carolyn Baglole
Andrea Benedetti
Boris Bernhardt
Marie Brossard-Racine
Amrita Daftary
Bratislav Misić
Nitika Pant Pai
Simon Rousseau
Madeleine Sharp
Per Jesper Sjoström
Aparna Suvarathan
Christine Tardif
Jeremy Van Raamsdonk
Bettina Willie

CLINICAL RESEARCH SCHOLARS
Deborah Assayag
Moshe Ben-Shoshan
Geneviève Bernard
Amal Bessissow
Brett Burstein
Inés Colmegna
Cecilia Costiuki
Stella Daskalopoulou
Natalie Dayan
Alexandra De Pokomandy
Vidal Essebag
Nicole Ezer
Lorenzo Ferri
Patricia Fontela
Isabelle Gagnon
Catherine Goudie
Marta Kaminska
Nadine Kronfi
Lawrence Lee
Todd Lee
Ariane Marelli
Paul Martineau
Emily McDonald
Suzanne Morin
Meranda Nakhla
Dao Nguyen
Tuong-Vi Nguyen
Maryam Oskoui
Sushmita Pamidi
Jesse Papenburg
Dan Poenaru
Janet Rennick
Ruth Sapir-Pichhadze
Jason Shahin
Abhinav Sharma
Benjamin Smith
Jonathan Spicer
Myriam Srour
George Thanassoulis
Donald Vinh
Julia von Oettingen
Pia Wintermark
Cédric Yansouni
Michael Zappitelli
George Zogopoulos

RESEARCH SCHOLARS EMERITUS
Christopher Pack

CANADIAN INSTITUTES OF HEALTH RESEARCH

APPLIED PUBLIC HEALTH CHAIR
David Buckeridge

GLAXOSMITHKLINE-PARTNERED CHAIR
Jean Bourbeau

NEW INVESTIGATOR
Jonathan Afifalo
Geneviève Bernard

NEW INVESTIGATOR: COMMUNITY-BASED PRIMARY HEALTH CARE
Patricia Li

NEW INVESTIGATOR: INFECTION AND IMMUNITY
Martin Richer

CANADA RESEARCH CHAIRS

Tier 1
Sylvain Baillet
Marcel Behr
Edward Fon
Marina Klein
Bartha Knoppers
Mark Lathrop
Leonard Levin
Heidi McBride
Marc McKee
William Muller

Tier 2
Madhukar Pai
Guy Rouleau
Michael Sullivan
Silvia Vidal

JAMES MCGILL PROFESSOR
Michal Abrahamowicz
Douglas Arnold
Sasha Bernatsky
Alan Evans
William Foulkes
Michael Kramer
Nancy Mayo
Peter McPherson
Morag Park
Louise Pilote
Bernard Robaire
Rima Rozen
Jan Seuntjens
Eric Shoubridge
Wayne Sossin
Stefano Stifani
Robyn Tamblyn
Jacquetta Trasler

WILLIAM DAWSON SCHOLAR
Jacek Majewski
Maya Saleh
Peter Siegel

KILLAM SCHOLAR
Gary Armstrong
Boris Bernhardt
Simon Ducharme
Richard Hoge
Jason Karamchandani
Benjamin Lo
Bratislav Misić
Adrien Peyrache
Madelaine Sharp
Awards and recognition

GENEVÎVE BERNARD
Prix d’excellence – Specialist of the Year award for Region 4, Royal College of Physicians and Surgeons of Canada

JEAN BOURBEAU
Distinguished CHEST educator, American College of Chest Physicians

CHARLES BOURQUE
ELHAM EMAMI
ZU-HUA GAO
LEONARD LEVIN
ERROL MARLISS
CÉCILE ROUSSEAU
KEVIN SCHWARTZMAN
Fellows, Canadian Academy of Health Sciences

CHARLES BOURQUE
President, Canadian Neurological Association

FRANCESCO (FRANCO) CARLI
Chairman, American Prehabilitation Society

NATALIE DAYAN
New Investigator Award, Canadian Society of Internal Medicine

GEORGE FANTUS
Lifetime Achievement Award, Diabetes Canada

EMMETT FRANCOEUR
Prix Letondal, Association of Pediatricians of Quebec

CATHERINE GOUDIE
Junior Faculty Career Development Award: Childhood Cancer Survivor Study, St. Jude Children’s Research Hospital, U.S.

WASSIM KASSOUF
Quebec’s Distinguished Research Scholar Award, Canadian Urological Association

DICK MENZIES
Research prize, Fédération des médecins spécialistes du Québec

MARTIN OLIVIER
Bernhard Cinader Award, Canadian Society for Immunology

OPAL HEALTH INFORMATICS GROUP, MUHC
Co-led by Tarek Hijal, John Kildea and the late Laurie Hendren

LOUISE PILOTE
Member, federal Scientific Advisory Committee on Health Products for Women

RONALD POSTUMA
World’s most cited and influential researchers list, Web of Science

BERNARD ROBAIRE
Jansen Distinguished Service Award, Society for the Study of Reproduction

GIADA SEBASTIANI
Guidelines panel, the European Aids Clinical Society

MAIDA SEWITCH
Fellow, Canadian Association of Gastroenterology

ROBYN TAMBLYN
Fellow, Royal Society of Canada

SPECIAL PRESENTATIONS

SUSAN BARTLETT
Keynote speaker, PROMIS Health Organization Scientific Meeting, U.S.

SASHA BERNATSKY
Plenary oral and Spotlight presentations, American College of Rheumatology Annual Scientific Meeting

NADINE KRONFLI
Keynote speaker, Canadian Liver Meeting

NITIKA PANT PAI
Innovation Panel and presentation, Forum on Microbial Threats, U.S. National Academy of Science

OPAL HEALTH INFORMATICS GROUP, MUHC
Co-led by Tarek Hijal, John Kildea and the late Laurie Hendren

LOUISE PILOTE
Member, federal Scientific Advisory Committee on Health Products for Women

RONALD POSTUMA
World’s most cited and influential researchers list, Web of Science

BERNARD ROBAIRE
Jansen Distinguished Service Award, Society for the Study of Reproduction

GIADA SEBASTIANI
Guidelines panel, the European Aids Clinical Society

MAIDA SEWITCH
Fellow, Canadian Association of Gastroenterology

ROBYN TAMBLYN
Fellow, Royal Society of Canada

SPECIAL PRESENTATIONS

SUSAN BARTLETT
Keynote speaker, PROMIS Health Organization Scientific Meeting, U.S.

SASHA BERNATSKY
Plenary oral and Spotlight presentations, American College of Rheumatology Annual Scientific Meeting

NADINE KRONFLI
Keynote speaker, Canadian Liver Meeting

NITIKA PANT PAI
Innovation Panel and presentation, Forum on Microbial Threats, U.S. National Academy of Science
The MUHC Data Warehouse is live!

Launched September 2019, the McGill University Health Centre (MUHC) Data Warehouse centralizes healthcare data from many clinical and administrative systems.

Reinforcing the strictest data security requirements, this valuable resource improves the ability of MUHC staff and researchers at the Research Institute of the MUHC (RI-MUHC) to analyze complex health care–related data, increasing opportunities for new discoveries in research and innovative approaches in health care delivery.

“The MUHC Data Warehouse will advance patient care and protect privacy by accelerating data-driven research and ensuring data security,” explains Dr. David Buckeridge, who conducts research at the RI-MUHC’s Centre for Outcomes Research and Evaluation. He is medical director of the MUHC Anonymized Data Warehouse, an important segment of the project that provides data without patient identifiers.

The MUHC Data Warehouse project was made possible by an infrastructure grant from the Canada Foundation for Innovation and carried out through exceptional collaborative efforts by teams at the RI-MUHC and MUHC.

Introducing the Clinical Innovation Platform

The RI-MUHC will soon celebrate the launch of a bold new concept. Designed to foster health tech startups, the Clinical Innovation Platform (CLIP) is a state-of-the-art facility within the Montreal General Hospital of the MUHC.

“Our responsibility is to ensure that the practice of medicine tomorrow will be better than the practice of medicine today,” says Dr. Gerald Fried, RI-MUHC researcher and medical director of the CLIP. “By identifying unmet clinical needs in the hospital, we can work with engineers and business experts to develop novel health technology products to meet these needs.”

As an interface for clinicians, engineers and entrepreneurs, he explains, “the CLIP is a hub where ideas can be developed, prototypes created and tested, so these solutions can be brought to the marketplace and benefit the largest possible population.”

The CLIP is managed by the Injury Repair Recovery Program at the RI-MUHC; Dr. Jake Barralet serves as administrative director.
Oversight

BOARD OF DIRECTORS
Peter Kruyt
CHAIR
Louise Proulx
INTERIM VICE-CHAIR
until Dec. 2019
Pierre Lortie
TREASURER
Cinzia Raponi
SECRETARY
Graham Bagnall
Mary-Anne Carignan
Martha Crago
David Eidelman
Pierre Gfeller
Bruce Mazer
Raymond Royer
Gloria Tannenbaum

CENTRE DIRECTORS
Jean Bourbeau
CENTRE FOR INNOVATIVE MEDICINE
Kaberi Dasgupta
CENTRE FOR OUTCOMES RESEARCH AND EVALUATION
Don van Meyel
CENTRE FOR TRANSLATIONAL BIOLOGY

AUDIT/INVESTMENT COMMITTEE
Pierre Lortie
CHAIR
Cinzia Raponi
SECRETARY
Graham Bagnall
Mary-Anne Carignan
Peter Kruyt
Jaime Pimstone
Dawn Singerman
Bruce Mazer

MANAGEMENT COMMITTEE
Bruce Mazer
CHAIR
Jenny Koulis
SECRETARY
Shari Baum
Jean Bourbeau
Miguel Burnier

Kaberi Dasgupta
David Eidelman
Reza Farivar-Mohseni
Liane Feldman
Gerald Fried
Indra Gupta
Costas Karatzas
Ariane Marelli
James Martin
Cinzia Raponi
Marc Rodger
Michael Shevell
Don van Meyel
Simon Wing

RESEARCH PROGRAM COUNCIL
Simon Wing
CHAIR
until Aug. 2019
Ariane Marelli
CHAIR
since Sep. 2019
Basil Petrof
VICE-CHAIR
Jenny Koulis
SECRETARY
Jean Bourbeau
Miguel Burnier
Daniel Dufort
Kaberi Dasgupta
Reza Farivar-Mohseni
Liane Feldman
Gerald Fried
Indra Gupta
Ed Harvey
Kashif Khan*
Costas Karatzas
Virginia Lee
James Martin
Bruce Mazer
Peter Metrakos
Keith Murai
Kim Phan*
Constantin Polychronakos
José Luis Ramirez-GarciaLuna*
Cinzia Raponi
Marc Rodger
Erwin Schurr

Michael Shevell
Don van Meyel

GUESTS:
ASSOCIATE PROGRAM LEADERS
DESJARDINS CENTRE FOR ADVANCED TRAINING REPRESENTATIVE
RESEARCH PROGRAM MANAGERS

*Trainee Council representatives

SCIENTIFIC ADVISORY COMMITTEE (2019)
Jim Woodgett
CHAIR
DIRECTOR OF RESEARCH, LUNENFELD-TANENBAUM RESEARCH INSTITUTE
Karen Antman
PROVOST, BOSTON UNIVERSITY MEDICAL CAMPUS AND DEAN, SCHOOL OF MEDICINE
Michael Brudno
DIRECTOR, CENTRE FOR COMPUTATIONAL MEDICINE, SICKKIDS RESEARCH INSTITUTE
Elliot Chaikof
SURGEON-IN-CHIEF, BETH ISRAEL DEACONESS MEDICAL CENTER, AND PROFESSOR, HARVARD MEDICAL SCHOOL
Albert Descoteaux
DIRECTOR, PHD PROGRAM IN VIROLOGY-IMMUNOLOGY OF INRS–INSTITUTE ARMAND-FRAPPIER
Elizabeth Eisenhauer
CLINICIAN SCIENTIST, KINGSTON GENERAL HOSPITAL RESEARCH INSTITUTE
Susan Marlin
PRESIDENT AND CEO, CLINICAL TRIALS ONTARIO
Freda Miller
SENIOR SCIENTIST, NEUROSCIENCES & MENTAL HEALTH, SICKKIDS RESEARCH INSTITUTE
Paula Rochon
VICE-PRESIDENT, RESEARCH, AND SENIOR SCIENTIST, WOMEN’S COLLEGE HOSPITAL
FUNDING SUMMARY

<table>
<thead>
<tr>
<th>Organization</th>
<th>Amount ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>50,129,587</td>
</tr>
<tr>
<td>Foundations of the McGill University Health Centre (MUHC)*</td>
<td>28,600,000</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—Santé</td>
<td>13,136,267</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>6,113,753</td>
</tr>
<tr>
<td>Canada Research Chairs</td>
<td>5,815,000</td>
</tr>
<tr>
<td>Canada Foundation for Innovation—Research Hospital Fund</td>
<td>5,522,311</td>
</tr>
<tr>
<td>Natural Sciences and Engineering Research Council of Canada</td>
<td>5,015,349</td>
</tr>
<tr>
<td>Research Support Fund (Government of Canada)</td>
<td>4,984,870</td>
</tr>
<tr>
<td>Génome Québec and Genome Canada</td>
<td>4,473,234</td>
</tr>
<tr>
<td>Ministère de l’Économie et de l’Innovation</td>
<td>4,471,644</td>
</tr>
<tr>
<td>CQDM</td>
<td>2,419,068</td>
</tr>
<tr>
<td>Brain Canada</td>
<td>2,411,580</td>
</tr>
<tr>
<td>U.S. Department of Defense</td>
<td>2,285,793</td>
</tr>
<tr>
<td>International Progressive MS Alliance</td>
<td>2,221,603</td>
</tr>
<tr>
<td>Amyotrophic Lateral Sclerosis Society of Canada</td>
<td>1,538,923</td>
</tr>
</tbody>
</table>

We are proud of our researchers’ success in funding competitions and grateful to the wide range of organizations, including many not named here, whose support totalled **$206 million** this year.

Our worldwide network

Ongoing research collaborations with 61 countries
<table>
<thead>
<tr>
<th>Organization</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogen Inc.</td>
<td>1,478,372</td>
</tr>
<tr>
<td>Merck & Company, Inc.</td>
<td>1,405,643</td>
</tr>
<tr>
<td>Canadian Cancer Society (CCS) and CCS Research Institute</td>
<td>1,114,522</td>
</tr>
<tr>
<td>European Commission</td>
<td>1,095,747</td>
</tr>
<tr>
<td>Terry Fox Research Institute</td>
<td>1,083,560</td>
</tr>
<tr>
<td>Cancer Research UK</td>
<td>976,844</td>
</tr>
<tr>
<td>Public Health Agency of Canada</td>
<td>976,513</td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>859,515</td>
</tr>
<tr>
<td>Michael J. Fox Foundation for Parkinson’s Research</td>
<td>824,811</td>
</tr>
<tr>
<td>MITACS</td>
<td>747,001</td>
</tr>
<tr>
<td>Ministère de l’Éducation et de l’Enseignement supérieur</td>
<td>633,327</td>
</tr>
<tr>
<td>Gouvernement du Québec—Other departments</td>
<td>617,000</td>
</tr>
<tr>
<td>International Development Research Centre</td>
<td>606,023</td>
</tr>
<tr>
<td>Weston Brain Institute</td>
<td>601,914</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—Nature et technologies</td>
<td>504,899</td>
</tr>
<tr>
<td>Multiple Sclerosis Society of Canada</td>
<td>484,545</td>
</tr>
<tr>
<td>Heart & Stroke</td>
<td>481,003</td>
</tr>
<tr>
<td>F. Hoffmann–La Roche Ltd.</td>
<td>462,981</td>
</tr>
<tr>
<td>Cystic Fibrosis Canada</td>
<td>453,656</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—SOCIÉTÉ ET CULTURE</td>
<td>424,417</td>
</tr>
<tr>
<td>Sanofi Genzyme</td>
<td>410,606</td>
</tr>
<tr>
<td>MEDTEQ</td>
<td>410,413</td>
</tr>
<tr>
<td>Foundation for Innovative New Diagnostics</td>
<td>391,830</td>
</tr>
<tr>
<td>Costello Bequest Foundation</td>
<td>341,181</td>
</tr>
<tr>
<td>Structural Genomics Consortium</td>
<td>312,500</td>
</tr>
<tr>
<td>Other Industries</td>
<td>24,603,288</td>
</tr>
<tr>
<td>Other granting agencies</td>
<td>23,368,177</td>
</tr>
<tr>
<td>Other revenues</td>
<td>1,291,771</td>
</tr>
</tbody>
</table>

The foundations of the MUHC include: Montreal General Hospital Foundation; McGill University Health Centre Foundation; Montreal Children’s Hospital Foundation; Cedars Cancer Foundation; and The Auxiliary of the Montreal General Hospital. Their valuable contributions to research are highlighted on pages 30-32.
Together we have the means to leverage discoveries that improve the health of patients across their lifespan

McGill University Health Centre Foundation (MUHCF)

Support for the RI-MUHC in 2019-2020: $16.8 million

The McGill Interdisciplinary Initiative in Infection and Immunity (MI4) has received more than $4.6 million from the MUHC Foundation for its COVID-19 Emergency Fund. This funding is driving dozens of ambitious research projects with principal investigators and researchers from the RI-MUHC, aiming to stop the spread of COVID-19 and to treat those hardest hit.

In addition to supporting the hospital’s most urgent needs, the MUHC Foundation provided more than $1 million to support recruitment and retention of top research talent at the RI-MUHC.

The Courtois Foundation made a historic $18 million donation to the MUHC Foundation’s $50 million Fix Broken Hearts Campaign, which will transform cardiovascular care at the MUHC through cutting-edge research and innovation. This extraordinary gift will allow researchers and clinicians to jointly pioneer tomorrow’s precision medicine in cardiovascular diseases.

[muhcfoundation.com]

A boon to patients and heart research!

The MUHC Foundation funded the purchase of a flagship Cardiac Magnetic Resonance (MR) machine, the 3T GE SIGNA™ Premier from GE Medical Systems, in September 2019.

The machine, which performs cutting-edge scans of the heart and vascular system, will provide the MUHC with unprecedented expertise in heart research, while considerably enhancing patient experience.
The Montreal General Hospital Foundation (MGHF)

The MGHF is honoured to have contributed $7.7 million to research projects during the last year. Our changing world makes innovation more vital than ever as we strive to overcome new challenges. That is why the MGHF is proud to support the RI-MUHC’s new Clinical Innovation Platform (see p. 26).

In the early days of the COVID-19 crisis, the MGHF spurred innovation by launching the Code Life Ventilator Challenge in collaboration with the RI-MUHC. In just two weeks more than 2,600 individuals from 94 countries joined the sprint to design a simple, low-cost, easy-to-manufacture and easy-to-maintain ventilator, which could be deployed anywhere needed to save lives.

Thanks to our generous donors and sponsors for their vital support. codelife.ca

The Auxiliary of the Montreal General Hospital

Working closely with the Montreal General Hospital (MGH) Foundation, MGH Auxiliary volunteers raise funds for the care and comfort of patients and for medical research and medical equipment at the MGH site of the MUHC.

The Hospitality Corner at the MGH traditionally contributes tip money to the RI-MUHC. The $75,000 donation of “Tips for Research” in 2019 will help purchase a cutting-edge microscope for the new Clinical Innovation Platform at the RI-MUHC (p. 26). mghauxiliary.ca
The Montreal Children’s Hospital Foundation

Support for the RI-MUHC in 2019-2020: $3,927,647

The clinical studies of the RI-MUHC Child Health and Human Development (CHHD) Program are crucial to the development of treatments for pediatric diseases. Cancer is one of these pernicious diseases.

With the essential support of Leucan, the CHHD Program and Division of Oncology at the Children’s work collaboratively with provincial and national partners on clinical trials that provide hope for a better future to children and teenagers stricken with cancer. Thank you, Leucan!

[Link to Leucan Foundation](fondationduchildren.com/en)

Cedars Cancer Foundation

Thirty riders set out on the third annual Cedars Ride for Hope and Gratitude in the Eastern Townships, raising over $125,000 in support of the Cedars-Laneuville Cell Therapy and Immunotherapy Initiative for blood cancers led by Dr. Pierre Laneuville. Funds raised allow doctors, researchers and patients to benefit from this promising area of research in the fight against cancer.

“Hope and gratitude are the words I live by every day,” explained Rob Callard, cancer survivor and the driving force behind this epic ride. “They are a constant reminder of the hope that we conquer this complicated disease, and the gratitude for life and for the wonderful people I have met who surround me in my life.”

[Link to Cedars Cancer Foundation](cedars.ca)