New discoveries, technologies and approaches have revolutionized **personalized medicine**.

Our scientists

are at the vanguard of this revolution.

Research Institute of the McGill University Health Centre (RI-MUHC)

Contents

2 About This Report
4 Messages from Bruce Mazer and Indra Gupta
5 Message from Peter Kruyt and Pierre Gfeller
5 Message from David Eidelman and Martha Crago

6 Drivers of Personalized Medicine

10 COVID-19: Our Researchers Answer the Call

14 Year in Review: Programs and Publications
22 Focus on Our Research Trainees

23 Business Development Activities

24 Salary Awards
25 Awards and Recognition
26 Leading-edge Research Resources
27 Oversight
28 Funding Summary
30 Your Support
Statistics

Represent fiscal year 2020 (April 1, 2019 to March 31, 2020), unless indicated otherwise

Research funds

Grants, contracts (including indirect costs), studentships, salary awards from peer-reviewed agencies, and funding from university and hospital foundations

Administered at either the RI-MUHC or McGill University, for RI-MUHC researchers

Researchers

Individuals conducting active and independent research, who have received at least $5,000 in research funding during the fiscal year

Staff

Administrative and research staff based at MUHC locations

Publications

Selected from July 2019 to June 2020

Counts

Active researchers are counted as of May 2020

Research trainees are counted as of July 2019

Staff are counted as of April 2020. Excludes researchers and trainees as well as staff located at the Montreal Neurological Institute and McGill Campus.

Images

The RI-MUHC respects public health guidelines to reduce transmission of COVID-19. Some images in this report were taken prior to the pandemic.

Editor-in-chief

Alison Burch
Marketing and Communications, RI-MUHC

Graphic Designer

Ildiko A. Horvath
Medical Multimedia Services, MUHC

Contributors

Patrick McDonough
André Simard and Jingjun (Julia) Yu

Data Management Office, RI-MUHC

Translator

Catherine Jalbert

Photographers

Medical Multimedia Services, MUHC
MUHC Foundation

Owen Egan and Joni Dufour

458 active members, including fundamental, clinical and evaluative researchers

1,195 research trainees, including 378 M.Sc. and 453 PhD candidates, 214 postdocs and 150 clinical research fellows

1,209 staff in research and administration

Over 1,900 peer-reviewed scientific publications

Over 2,000 scientific talks given by our researchers worldwide

32,563 square metres of research space

408 research contracts and 725 agreements signed

28 invention disclosures

Ongoing research collaborations with 61 countries
Message from Bruce Mazer

There is no doubt that 2019-2020 was a year filled with challenges and achievements. Our research community is unique, dedicated, creative, forward-thinking and innovative. Child or adult, every patient who inspires our work at the Research Institute of the McGill University Health Centre (RI-MUHC) is unique, too, and deserves to benefit from exciting new targeted therapies.

Whether it is for landmark public health studies, understanding the implications of a new disease-causing gene in a single patient or family, planning for a bold new Clinical Innovation Platform, or our robust response to the COVID-19 pandemic, we may take tremendous pride in the successes of the past year.

In our community of RI-MUHC researchers, trainees and staff, MUHC clinicians and patients, and committed funding partners, we are all drivers of personalized medicine.

Bruce Mazer, MD
Executive Director and Chief Scientific Officer (Interim), RI-MUHC, October 2016–June 2020

Message from Indra Gupta

As we adapt to the challenging constraints of the pandemic, science has prevailed at the speed of light with landmark pediatric studies in COVID-19 research and innovative therapies in mental health for our most vulnerable and youngest patients. Our pediatric research community quickly demonstrated strength in these and other areas requiring multidisciplinary collaboration. This would not have been possible without the invaluable partnership of the Montreal Children’s Hospital Foundation, whose support safeguards the continuity of our research advancement and shaping of future scientists in child health research.

My sincerest gratitude to Dr. Bruce Mazer, whose leadership over the last four years has established the RI-MUHC on the global centre stage, and whose extraordinary steering efforts have sustained the acceleration of pivotal research during these precarious times.

Indra Gupta, MD
Deputy Executive Director and Deputy Chief Scientific Officer (Interim), RI-MUHC, and Head of Child Health Research (Interim), MUHC

Message from the McGill University Health Centre (MUHC)

We are pleased to recognize the accomplishments of the Research Institute of the McGill University Health Centre (RI-MUHC) in the context of this annual report, and to thank researchers, trainees, management and support staff alike for their curiosity, fervour and focus.

As a subsidiary of the MUHC, the success of the RI-MUHC is intertwined with that of the MUHC. Together, we eye the future to change the present. We pivot to adapt to new realities and anticipate other needs. This is why leadership and sustained support are critical. In that regard, we would like to express particular gratitude to Dr. Bruce Mazer as outgoing Interim Executive Director and Chief Scientific Officer. His enthusiastic and extended service has helped the RI-MUHC address opportunities and challenges over the last four years, including those related to personalized medicine and the COVID-19 pandemic. We would also like to express gratitude to the RI-MUHC’s teams, partners, funders, and supporters for acting collaboratively with purpose to achieve common goals. We look forward to many more impressive achievements in the year ahead.

Peter Krynt, Chairman, and Pierre Gfeller, MD CM MBA, Board member and MUHC President and Executive Director

Message from McGill University

COVID-19 has taught us that in the face of a global health crisis, collaboration is paramount. At the outset of the pandemic, many McGill and RI-MUHC scientists whose research was abruptly interrupted turned on a dime to collectively fight the novel virus.

Of course, collaboration between our institutions is not new. The pioneering genetic research conducted in RI-MUHC and McGill labs offered the earliest glimpses of where we were heading: personalized medicine, which hailed the next frontier in medical research. Today, genetic testing leads to targeted cancer regimens, which improve outcomes in ways the first oncologists could never have imagined. We now use personalized medicine to treat an increasingly broad array of cancers, as well as for cardiovascular disease, microbiome research and more.

We offer our RI-MUHC colleagues a heartfelt thank-you for their leadership and contributions in fighting the pandemic. Congratulations on the advances achieved this year, be they COVID-19-related or in any of the other areas in which you excel.

David Eidelman, MD, CM, Vice-Principal (Health Affairs) and Dean, Faculty of Medicine and Health Sciences
Martha Crago, MD, CM, Vice-Principal (Research and Innovation)
Drivers of personalized medicine

Physicians, over the course of medical history, have considered a range of individual factors in determining how to treat afflictions. But new discoveries, technologies and approaches have revolutionized personalized medicine, and scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) are at the vanguard of this revolution. Their investigations are leading to greater understanding of our unique bodies, and how best to keep us healthy.

Through this small sampling of their work, discover why our researchers are committed to driving personalized medicine.

Ensuring mobility: the “Hip-Mobile”

Hip fractures in elderly patients result in a loss of mobility that diminishes their overall health and well-being.

Dr. Suzanne Morin, of the Metabolic Disorders and Complications Program, is committed to finding ways to ensure patients recover from their fractures and don’t suffer a second one. She and her team have developed and are testing a new rehabilitation technology: the “Hip-Mobile,” a “smart” insole that patients insert in their shoe. Patients agreeing to participate in an extended rehabilitation project are given initial training and then monitored over an eight-month period by the smart insole, which communicates with a tablet via Bluetooth. These results are linked to Dr. Morin’s lab, allowing her to track the frequency and quality of the patient’s rehabilitation and to adjust the program as necessary.

“I want to understand how a given treatment will interact with both your genetic and your ‘microbial’ self,” says Dr. Morin. “This approach provides the patient with a personalized rehabilitation program remotely. They benefit from staying in their own home and receiving simple coaching through the program on their tablet,” says Dr. Morin. “There are inevitable challenges in using new technology with the very elderly, but people as old as 98 have successfully completed the program.”

SMALL DIFFERENCES CAN MAKE A BIG CHANGE

Dr. Morin’s extended study is providing additional insights. “As participants become more mobile, their perceptions of their health and their abilities change significantly. So, in addition to providing rehab, we are acquiring information about their general strength and mobility, and even their mood,” she says. “We want this approach to translate into better clinical outcomes because as we age, even small differences can make a big change in our ability to do the things we enjoy.”

Your microbiome, the accumulation of microbes living in and on the body, creates your unique “microbial self.” The better you know this self, the better you can understand certain health issues.

“This microbiome can be beneficial or detrimental to human health, depending on its composition,” says Irah King (PhD) of the Transitional Research in Respiratory Diseases Program. “It can predispose you to a condition that may be dictated by a genetic difference, or you can have a genetic predisposition which might alter the microbiome and therefore lead to a different state of health.”

Introducing your microbial self

Irah King’s research addresses how the microbiome affects the immune system and how that may relate to such autoimmune diseases as psoriasis, inflammatory bowel disease, or even respiratory disease. “The gut holds the most microbial species and the most immune cells, creating an intimate relationship between the two. The microbiome may influence the immune system, which may then influence disease,” he says. “We want to understand how a given treatment will interact with both your genetic and your ‘microbial’ self.”

WHY A GNOTOBIOTIC RESEARCH PLATFORM?

Irah King is the director of the RI-MUHC’s new Gnotobiotic Research Platform, a resource for the study of animal models, primarily mice, that have an identical genetic make-up and are either microbe-free or have a known, controlled microbial composition. The facility, to be opened in the coming year, will enable researchers to control and assess the relationship between genetics and microbiomes. “We will be able to manipulate the microbiota while everything else remains the same,” says King. “Then we can focus on causation rather than simply on identifying correlation.”
Investigating genetic profiles for cancer patients

It has long been known that genetic make-up affects one's risk of cancer. For instance, while less than one percent of women will develop ovarian cancer, those carrying a particular mutation have a risk of forty to sixty percent. It is important for both the individual and physician to know each patient's genetic makeup and select the best therapy.

Enter Oncodrive, a project led by Patricia Tonin (PhD), associate leader of the Cancer Research Program, who has been involved in the discovery of several genetic mutations that predict the likelihood of developing the disease. "Oncodrive aims to improve the management of cancer patients by deriving the individual's entire genetic sequence," she explains. "Many genetic mutations measurably affect risk, and that information should be provided to people with those mutations and to their physicians. As well, certain genetic mutations can affect a patient's response to specific therapies, which then influences the choice of treatment."

Through Oncodrive databases, physicians will have access to the patient's genetic profile and be able to adapt treatment appropriately, applying more aggressive therapies for patients whose genes suggest they will be subject to aggressive cancers. Researchers will also draw on the database to identify other mutations that could contribute to a patient's chances of developing cancer.

STARTING WITH MUHC BREAST CANCER PATIENTS

Oncodrive will initially focus on collecting genetic information from breast cancer patients at the MUHC. "Women with breast cancer tend to be aware of the role of genetic mutations and the uses of genetic testing, and are probably more ready to look at the rest of the genome to see what other factors could be contributing to their risk or affecting their treatment," says Patricia Tonin.
COVID-19: Our researchers answer the call

When the COVID-19 pandemic hit, much of the world locked down. But that has not kept scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) from focusing their energies on a new imperative: resolving challenges raised by the pandemic.

Many staff, trainees and funding partners have also pivoted in their work to support this vital research. The McGill University Health Centre (MUHC) Foundation, for instance, quickly organized seed funding for dozens of projects, including several below, through the McGill Interdisciplinary Initiative in Infection and Immunity (MI4) Emergency COVID-19 Research Fund (ECRF). Here we consider only a few frontline projects launched at the RI-MUHC with the aim of locking down the coronavirus.

Blocking the virus

The coronavirus binds to human cells using what is called a “spike” protein, which creates a means for the virus to enter human cells. Researchers around the world are working to develop a vaccine that will interfere with this spike protein, prohibiting the virus from binding.

Momar Ndao (DVM, PhD), Martin Olivier (PhD) and Michael Reed (PhD), colleagues in the Infectious Diseases and Immunity in Global Health Program, are developing a novel approach to obstruct this protein. They lead an effort to explore the potential of hydroxychloroquine in different contexts. Their first trial focused on post-exposure prophylaxis—preventing infection if someone had been exposed—and their second on whether early community treatment improved disease outcome. These were the first randomized controlled trials for COVID-19 to recruit patients in Canada, and the first completed.

“Despite a lot of excitement and promise for the drug, we found that hydroxychloroquine does not seem to be effective as either post-exposure prophylaxis or to reduce symptoms in early disease,” says Dr. McDonald.

Testing hydroxychloroquine

In March 2020 Drs. Todd C. Lee, Emily G. McDonald and Matthew P. Cheng, members of the Infectious Diseases and Immunity in Global Health Program, launched a clinical study coordinated with another in Minnesota, U.S., to explore the potential of hydroxychloroquine in different contexts. Their first trial focused on post-exposure prophylaxis—preventing infection if someone had been exposed—and their second on whether early community treatment improved disease outcome. These were the first randomized controlled trials for COVID-19 to recruit patients in Canada, and the first completed.

“Despite a lot of excitement and promise for the drug, we found that hydroxychloroquine does not seem to be effective as either post-exposure prophylaxis or to reduce symptoms in early disease,” says Dr. McDonald.

Dr. Lee adds, “We’re still pooling data with international trials to see if there were fewer hospitalizations for those who received early treatment, but it may be time to move on to evaluate other candidate drugs.”

Funding: MUHC Foundation (MI4 ECRF) and MUHC Clinical Practice Assessment Unit

Cardiac conditions and the coronavirus

Dr. Abhinav Sharma of the Cardiovascular Health Across the Lifespan Program is concerned with management of cardiac conditions during the pandemic.

“There is controversy around the use of commonly used blood pressure medications, specifically angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs),” he explains. “COVID-19 virus needs the protein that these drugs bind to in order to enter the cells.”

One hypothesis suggests that people on these medications may be beneficial, reducing inflammation and fibrosis. Dr. Sharma is studying the effect of withdrawing ACE inhibitors to learn how that impacts patients hospitalized with COVID-19. “Our study will determine if temporarily withholding these blood pressure medications is safe and improves patient outcomes,” he says.

Funding: MUHC Foundation (MI4 ECRF) and MUHC Division of Cardiology

Improving patient outcomes: Dr. Abhinav Sharma
Tracking international approaches to COVID-19

Dr. David Buckeridge, a researcher in the Metabolic Disorders and Complications Program, is designing new methods of using artificial intelligence to survey online media. He aims to understand which countries are implementing which kind of control measures, when they’re doing it, and how people and communities are reacting to it.

“We use online media to build portraits of how countries are controlling the pandemic around the world,” says Dr. Buckeridge, “and then we try and tie in more traditional data around numbers of cases and deaths to see to what extent those efforts are having an effect.”

His study aims not only to identify clear differences and patterns regarding approaches used around the world, but also to track popular reactions to those approaches and issues at the forefront in the media.

Funding: The Canadian 2019 Novel COVID-19 Rapid Research Funding Opportunity

Made-in-Canada COVID-19 tests

When COVID-19 hit Canada, most testing kits were made by multinational corporations without obligation to meet Canadian needs. Old hockey buddies Don van Meyel (PhD) of the Brain Repair and Integrative Neuroscience Program and Martin Schmeing (PhD), a biochemistry professor at McGill University, led a team of talented McGill researchers to produce COVID-19 testing kits for which all essential test components were made in Canada.

A pilot project to deliver 15,000 tests to Optilab MUHC served as proof of concept, and collaboration with scientists at the National Research Council is enabling scale-up to produce millions of tests.

“We want to be able to produce and distribute these tests nationwide when they are needed,” says Don van Meyel, who directs the Centre for Translational Biology at the RI-MUHC. “Decisions about who and when to test in Canada should be driven by strong scientific and public health policy, not by limitations in the number of tests available.”

Funding: MUHC Foundation (MI4 ECRF), McGill Faculty of Science, National Research Council of Canada, Innovation Science and Economic Development Canada

Supporting healthcare workers

Healthcare professionals have found themselves under tremendous pressure during the COVID-19 pandemic. Jason Harley (PhD) of the Injury Repair Recovery Program and Tina Montreuil (PhD, PsyD) of the Child Health and Human Development Program have developed a survey of the support and coping strategies that healthcare professionals are using, in order to help inform hospital networks and promote practices that would best support these workers. “That means having a better understanding of the stressors and the psychological distress that healthcare professionals are experiencing,” says Jason Harley.

The pair aims to shed light on issues of physical and emotional exhaustion and high absenteeism among healthcare workers. “The idea is to gain greater insight into what is really going on in the system so that we’re better able to support the hospitals and their workers,” adds Tina Montreuil.

Funding: MUHC Foundation and partners (MI4 ECRF)

First UV-disinfection robot tested in Canada

When Rami Tohme, director of Infrastructure and Biomedical Engineering (RI-MUHC), came across a robot that disinfects using ultraviolet light at a medical show in Germany, he saw it as a technology that could help hospitals at home lower their infection rates. Dr. Bruce Mazer (Translational Research in Respiratory Diseases Program) agreed, and invited his team to help in the first evaluation of this robot inside a Canadian hospital.

“My job was not to highlight its capacity for disinfection, because that’s already proven,” says Rami Tohme. “We wanted to test its capability to disinfect without human intervention.” The evaluation teams delivered a thumbs-up for the acquisition of two robots at the RI-MUHC.
RESEARCH HIGHLIGHTS
How epilepsy arises in the healthy brain
• A study in rodents used laser light to target populations of brain cells and investigate their contributions to seizures.
 First author: Elvis Cela (PhD), then doctoral student; senior author: Per Jesper Sjöström (PhD), Scientific Reports

SELECTED PUBLICATIONS

Elvis Cela, PhD

Brain Repair and Integrative Neuroscience Program (BRaIN)
rimuhc.ca/BRaIN

RESEARCH HIGHLIGHTS
Cancer Research Program (CRP)
rimuhc.ca/CRP

SELECTED PUBLICATIONS

Research associate honoured by Society for Neuroscience (SFN) and Canadian Association for Neuroscience (CAN)

• Cristian Zaelzer-Perez (PhD) is co-recipient of the 2019 Science Education Award (SFN) and 2020 CAN Neuroscience Outreach Advocacy Award
• He founded the Convergence: Perceptions of Neuroscience Initiative to engage the public on the crossover between neuroscience and art.

Cristian Zaelzer-Perez, PhD

Elena de Guise, PhD

Elvis Cela, PhD

YEAR IN REVIEW
ANNUAL REPORT 2020
600-04746-
2020-1R-1
RIMUHC ANNUAL REPORT 2020
14
RIMUHC ANNUAL REPORT 2020
15
Cardiovascular Health
Across the Lifespan Program (CHAL)
Mitigation of the risk of kidney transplant loss

- Dr. Ruth Sapir-Pichhadze and colleagues including Dr. Bethany Foster, Child Health and Human Development Program, demonstrated that donor-recipient matching for specific features of HLA genes would be a useful strategy to delay its effects.

Overcoming resistance in malignant brain tumours

- Bertrand Jean-Claude (PhD) and colleagues, including study lead Shiam Sabri (PhD), demonstrated the anti-tumour activity of a comb–molecule to overcome resistance of glioblastoma stem cells to DNA-damaging chemotherapy.

SELECTED PUBLICATIONS

RI-MUHC ANNUAL REPORT 2020

Metabolic Disorders and Complications Program (MeDiC)

Ahmad Haidar, Michael A. Tsoukas, Sarah Bernier-Twary, Jean François Yalé, Joanna Rutkowski, Anne Bossey, Evelyne Pyka, Anas El-Fathi, Natalia Strauss, Laurent Legault.

Emily Machiela, Thomas Lontiès, Dylan J. Dues, Paige D. Rudich, Anniya Traa, Leslie Wyman, Corah Kaufman, Jason F. Cooper, Derek J. Dues, Lamine Aoudjit, Cindy Baldwin, Elham Rahme.

Jill Pancer, Nancy Wu, Itisam Mahmoud, Kabeer Dasgupta.

Laurence Gagnon, Yubo Cao, Aaron Cho, Dana Sediki, Thomas L. Huber, Thomas P. Sakmar, Stéphane A. Laporte.

Loan Nguyen-Yamamoto, Kenichiro Tanaka, Rene St-Arnaud, David Goltzmann.

Vitamin D-regulated osteoclastic sclerostin and BMP7 modulate uremic extracellular calcification. JCI Insight 3(12):e126467, 2018.

Marie Eve Robinon, Marc Simard, Isabelle Larocque, Jai Shah, Meranda M. Nakhlia, Elham Rahme.

Infectious Diseases and Immunity in Global Health Program (IDIGH)

RI-MUHC ANNUAL REPORT 2020

RESEARCH HIGHLIGHTS

New criteria for diagnosing sarcopenia

- Stéphanie Chevalier (RD, PhD) and colleagues including Dr. Ruth Sapir-Pichhadze (PhD), Stéphanie Chevalier (RD, PhD), Dr. José Morais, developed a tool that provides health professionals with a standard to diagnose sarcopenia and to implement prevention strategies to delay its effects.

Diagnostics of Patients With Inflammatory Bowel Diseases Switched From Maintenance to a Biologic Remicade. Clinical Gastroenterology and Hepatology 17(12):2506-2513.e2, 2019.

Arnaud, David Goltzman, Nadia M. Dussault, Jean François Yale, Sarah Bernier-Twardy, Jean-Marc Perreault, Cédric Tsoukas, Ibrahim Al Souedy, Vishal Kapur, Marcel A. Behr.

Vinicius M. Fava, Yong Zhong Xu, Guillaume Lettuye, Nguyen Van Thu, Manigandan Dravida, Vu Hong Thai, Shao Tao, Nathalie Croteau, Mohamed A. Eldeeb, Emma J. MacDougal, Gesion Cambri, Lamont Rahr, Linda Adams, Edward A. Fon, Jean-François Trempe, Aurélie Cobat, Alexandre Alcaïs, Laurent Abel, Erwin Schur.

Dr. Matthew Cheng and Cédric Yansouni, with UBC and Harvard Medical School collaborators, confirmed the importance of identifying good blood cultures before giving antibiotics to septic patients.

- Increases likelihood of identifying a pathogen and providing targeted treatment (Annals of Internal Medicine)

RESEARCH HIGHLIGHTS

Montreal sans HépC

- Dr. Dr. Matthew Cheng and Cédric Yansouni, with UBC and Harvard Medical School collaborators, confirmed the importance of identifying good blood cultures before giving antibiotics to septic patients.

- Increases likelihood of identifying a pathogen and providing targeted treatment (Annals of Internal Medicine)

Sepsis: Test before starting treatment

- Drs. Matthew Cheng and Cédric Yansouni, with UBC and Harvard Medical School collaborators, confirmed the importance of identifying good blood cultures before giving antibiotics to septic patients.

- Increases likelihood of identifying a pathogen and providing targeted treatment (Annals of Internal Medicine)

New family of enzymes identified in fungal infections

- Dr. Don Sheppard with Lynne Howell (PhD), University of Toronto, identified an enzyme critical for biofilm formation in the fungus Aspergillus fumigatus

- Co-first author (Nature Communications): postdoc François Le Mauff (PhD).

SELECTED PUBLICATIONS

RI-MUHC ANNUAL REPORT 2020

YEAR IN REVIEW
RI-MUHC ANNUAL REPORT 2020

Injury Repair Recovery Program (IRR)

Christopher Piedrauer, Carl Lavenderé, Adam H. Hart, Mathieu Boly, Mark L. Burman, Paul André Martineau.

Evaluating the Accuracy of Tuberous Tunnel Placement After Anatomic Single-Bundle Anterior Cruciate Ligament Reconstruction.

SELECTED PUBLICATIONS

Better guidelines for patients with gastrointestinal bleeding

- **Dr. Alan Barkun**, with Dr. Marc Bardou (Dijon-Bourgogne University Hospital, France), led a group of international experts to develop new guidelines published in *Annals of Internal Medicine*.
- **Better management of patients with nonvariceal upper gastrointestinal bleeding could reduce pressures in the ER**

SELECTED PUBLICATIONS

Translational Research in Respiratory Diseases Program (RESP)

What is our new generation of researchers achieving today?

Cooperation Grand Prize winners invent a prototype that could reduce the impact of heart disease worldwide

Capturing the 2019 Cooperation grand prize of $65,000 in start-up funding, an RI-MUHC-trained team beat 250 others with their PLAKK prototype, using artificial intelligence to help reduce heart attacks and strokes. Kashif Khan and Karina Gasbarrino trained at the doctoral level in the Cardiovascular Health Across the Lifespan Program at the RI-MUHC. Entrepreneur Nicolas Bent spent time in the Brain Repair and Integrated Neuroscience Program.

First-prize presentation at Diabetes Canada Conference

Nancy Wu, a trainee in the Metabolic Disorders and Complications Program, won first prize for her oral presentation at the 2019 Diabetes Canada Professional Conference. Part of her work for an M.Sc. in epidemiology, the study proposes to identify the most important outcomes to measure in a program that aims to prevent diabetes development in women who have glucose intolerance during their pregnancy.

Harnessing the potential of emerging technology applications

Audrey Kapelanski-Lamoureux, doctoral student in the Cancer Research Program, completed an Artificial Intelligence for Genomics program offered by the District 3 Innovation Centre at Concordia University. Taking second place for their project, her team developed a deep learning approach to improve the predictive value of a clinical meta-dataset.

Precision screening tool for early diagnosis of ovarian and endometrial cancers developed through innovative partnerships

Together, ovarian and endometrial cancers represent the fourth leading cause of cancer-related deaths among Canadian women. Although more than 80% of these patients can be cured if their cancer is detected early, most women are only diagnosed after the cancer has spread throughout the body—at which point it is incurable. This devastating reality persists because available screening techniques lack the sensitivity and specificity to diagnose these cancers in the early stages of the disease. To combat the evasive nature of these cancers, Dr. Lucy Gilbert (Cancer Research Program) and her team have developed an innovative diagnostic tool that is redefining the way we detect ovarian and endometrial cancers.

A clinician-scientist and director of the Women’s Health Research Unit at the McGill University Health Centre (MUHC), Dr. Gilbert spearheaded the development of a first-in-kind precision Pap test called DOvEEgene that is capable of "Detecting Ovarian and Endometrial Cancer Early using genomics." To accomplish this remarkable feat, DOvEEgene evaluates a panel of specific genetic mutations that occur in the early stages of ovarian and endometrial cancers.

To transition DOvEEgene from the research laboratory into a clinical-grade diagnostic test, Dr. Gilbert worked in close collaboration with the RI-MUHC Business Development Office team directed by Costas Karatzas (PhD) and with Julie Quenneville, President and CEO of the MUHC Foundation, to establish scientific networks, commercial partnerships and secure financing. Through these interactions, Dr. Gilbert, in partnership with Optilab-MUHC and the launch of a $2 million campaign by the MUHC Foundation, was recently awarded a prestigious $6.24 million grant from Genome Canada’s Genomic Applications Partnership Program (GAPP). This funding will enable the bench-to-bedside transition of DOvEEgene into gynecology clinics, bringing DOvEEgene one step closer to saving the lives of thousands of women worldwide.
Salary awards

FONDS DE RECHERCHE DU QUÉBEC-SANTÉ

RESEARCH CHAIRS
Nada Jabado
Edward Ruthazer
Donald Sheppard

RESEARCH SCHOLARS
Carolyn Baglole
Andrea Benedetti
Boris Berenfeld
Marie Brossard-Racine
Amrita Daftary
Bratislav Misic
Nitika Pant Pai
Simon Rousseau
Madeleine Sharp
Per Jesper Sjostrom
Aparna Subrmanian
Christine Tardif
Jeremy Van Raamsdonk
Bettina Willie

CLINICAL RESEARCH SCHOLARS
Deborah Assayag
Moshe Ben-Shoshan
Geneviève Bernard
Amal Bessissow
Brett Burstein
Inês Colmegna
Cecilia Costiniuk
Stella Daskalopoulou
Inés Colmegna
Brett Burstein
Amal Bessissow
Geneviève Bernard
Moshe Ben-Shoshan
Deborah Assayag
SCHOLARS
Bettina Willie
Jeremy Van Raamsdonk
Christine Tardif

SALARY AWARDS

RI-MUHC ANNUAL REPORT 2020

AWARDS AND RECOGNITION

GENEVIÈVE BERNARD

Tier 1
Sylvain Bailleau
Marcel Behr
Edward Fon
Marina Klein
Bartha Knoppers
Mark Lathrop
Leonard Levin
Heidi McBride
Marc McKee
William Muller

Tier 2
Xiaoqian Chai
Brian Chen
Kolja Eppert
Reza Farivar-Mohseni
Ahmad Haidar
Dennis Jensen
Irah King
Marc Martel
Adrien Peyrache
Stuart Trenholm
Yang Zhou

MCGILL UNIVERSITY

JAMES MCGILL PROFESSOR
Michal Abrahamowicz
Douglas Arnold
Sasha Bernatsky
Alan Evans
William Foulines
Michael Kramer
Nancy Mayo
Peter McPherson
Morag Park
Louise Pilote
Bernard Robaire
Rima Rozen
Jan Seuntjens
Eric Shoubridge
Wayne Sossin
Stefano Stifani
Robyn Tamblyn
Jacqueta Trasler

WILLIAM DAWSON SCHOLAR
Jacek Majewski
Maya Saleh
Peter Siegel

KILLAM SCHOLAR
Gary Armstrong
Boris Berenfeld
Simon Ducharme
Richard Hoge
Jason Karamchandani
Benjamin Lo
Bratislav Misic
Adrien Peyrache
Madeleine Sharp

BROOKLYN HEALTH INFORMATICS GROUP, MUHC

Co-led by Tarek Hijal,
John Kildea and the late
Laurie Hendren

New Investigator Award, Canadian Society of Internal Medicine

GERARD FORTOS

New Investigator Award, Canadian Society of Internal Medicine

GEORGE FANTUS

Lifetime Achievement Award, Diabetes Canada

EMMETT FRANCOEUR

Prix Letondal, Association of Pediatricians of Quebec

CATHERINE GOUDIE

Junior Faculty Career Development Award: Childhood Cancer Survivor Study, St. Jude Children’s Research Hospital, U.S.

WASSIM KASSOUF

Quebec’s Distinguished Research Scholar Award, Canadian Urological Association

DICK MENZIES

Research prize, Fédération des médecins spécialistes du Québec

ROBYN TAMBLYN

Fellow, Royal Society of Canada

SUSAN BARTLETT

Keynote speaker, PROMIS Health Organization Scientific Meeting, U.S.

NADINE KRONFLI

Keynote speaker, Canadian Liver Meeting

MAIDA SEWITCH

Fellow, Canadian Association of Gastroenterology

SPECIAL PRESENTATIONS

NITIKA PANT PAI

Innovation Panel and presentation, Forum on Microbial Threats, U.S. National Academy of Science
The MUHC Data Warehouse is live!

Launched September 2019, the McGill University Health Centre (MUHC) Data Warehouse centralizes healthcare data from many clinical and administrative systems. Reinforcing the strictest data security requirements, this valuable resource improves the ability of MUHC staff and researchers at the Research Institute of the MUHC (RI-MUHC) to analyze complex health care–related data, increasing opportunities for new discoveries in research and innovative approaches in healthcare delivery.

"The MUHC Data Warehouse will advance patient care and protect privacy by accelerating data-driven research and ensuring data security," explains Dr. David Buckeridge, who conducts research at the RI-MUHC’s Centre for Outcomes Research and Evaluation. He is medical director of the MUHC Anonymized Data Warehouse, an important segment of the project that provides data without patient identifiers.

The MUHC Data Warehouse project was made possible by an infrastructure grant from the Canada Foundation for Innovation and carried out through exceptional collaborative efforts by teams at the RI-MUHC and MUHC.

Introducing the Clinical Innovation Platform

The RI-MUHC will soon celebrate the launch of a bold new concept. Designed to foster health tech startups, the Clinical Innovation Platform (CLIP) is a state-of-the-art facility within the Montreal General Hospital of the MUHC.

"Our responsibility is to ensure that the practice of medicine tomorrow will be better than the practice of medicine today," says Dr. Gerald Fried, RI-MUHC researcher and medical director of the CLIP. "By identifying unmet clinical needs in the hospital, we can work with engineers and business experts to develop novel health technology products to meet these needs."

As an interface for clinicians, engineers and entrepreneurs, he explains, "the CLIP is a hub where ideas can be developed, prototypes created and tested, so these solutions can be brought to the marketplace and benefit the largest possible population."

"The CLIP is managed by the Injury Repair Recovery Program at the RI-MUHC; Dr. Jake Barralet serves as administrative director."

Overseas

<table>
<thead>
<tr>
<th>BOARD OF DIRECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
</tr>
<tr>
<td>Peter Kruty</td>
</tr>
<tr>
<td>Interim Vice-Chair</td>
</tr>
<tr>
<td>Louise Proulx</td>
</tr>
<tr>
<td>Treasurer</td>
</tr>
<tr>
<td>Pierre Lortie</td>
</tr>
<tr>
<td>Secretary</td>
</tr>
<tr>
<td>Cinzia Raponi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRE DIRECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jean Bourbeau</td>
</tr>
<tr>
<td>Centre for Innovative Medicine</td>
</tr>
<tr>
<td>Kaberi Dasgupta</td>
</tr>
<tr>
<td>Centre for Outcomes Research and Evaluation</td>
</tr>
<tr>
<td>Don van Meyel</td>
</tr>
<tr>
<td>Centre for Translational Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUDIT/INVESTMENT COMMITTEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre Lortie</td>
</tr>
<tr>
<td>Chair</td>
</tr>
<tr>
<td>Cinzia Raponi</td>
</tr>
<tr>
<td>Secretary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANAGEMENT COMMITTEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Mazer</td>
</tr>
<tr>
<td>Chair</td>
</tr>
<tr>
<td>Jenny Koulis</td>
</tr>
<tr>
<td>Secretary</td>
</tr>
</tbody>
</table>

Kaberi Dasgupta
David Eidelman
Reza Farivar-Mohseni
Liane Feldman
Gerald Fried
Indra Gupta
Costas Karatzas
Ariane Marelly
James Martin
Cinzia Raponi
Marc Rodger
Michael Shevell
Don van Meyel
Simon Wing

RESEARCH PROGRAM COUNCIL

Simon Wing
Chair

Ariane Marelly
Chair

Basil Petrof
Vice-Chair

Jenny Koulis
Secretary

Jean Bourbeau
Miguel Burnier
Daniel Duftorf
Kaberi Dasgupta
Reza Farivar-Mohseni
Liane Feldman
Gerald Fried
Indra Gupta
Ed Harvey
Kashif Khan
Costas Karatzas
Virginia Lee
James Martin
Bruce Mazer
Peter Metrakos
Keith Muri
Kim Pham
Constantin Polychronakos
José Luis Ramirez-GarciaLuna
Cinzia Raponi
Marc Rodger
Erwin Schurr

Michael Shevell
Don van Meyel

GUESTS:

- Associate Program Leaders:
 - Desjardins Centre for Advanced Training Representative
 - Research Program Managers:
 - Trainee Council representatives

SCIENTIFIC ADVISORY COMMITTEE (2019)

Jim Woodgett
Chair
Director of Research, Lumenard-Tanenbaum Research Institute

Karen Antman
Provost, Boston University Medical Campus and Dean, School of Medicine

Michael Brudno
Director, Centre for Computational Medicine, SickKids Research Institute

Elliot Chaikof
Surgery-in-Chief, Beth Israel Deaconess Medical Center, and Professor, Harvard Medical School

Albert Descoteaux
Director, PhD Program in Virology-Immunology of ICR-Institute Armand-Frappier

Elizabeth Eisenhauer
Clinician Scientist, Kingston General Hospital Research Institute

Susan Martin
President and CEO, Clinical Trials Ontario

Freda Miller
Senior Scientist, Neurosciences & Mental Health, SickKids Research Institute

Paula Rochon
Vice-President, Research, and Senior Scientist, Women’s College Hospital
FUNDING SUMMARY

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Funding Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>$50,129,587</td>
</tr>
<tr>
<td>Foundations of the McGill University Health Centre (MUHC)*</td>
<td>$28,600,000</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—Santé</td>
<td>$13,136,267</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>$6,113,753</td>
</tr>
<tr>
<td>Canada Research Chairs</td>
<td>$5,815,000</td>
</tr>
<tr>
<td>Canada Foundation for Innovation—Research Hospital Fund</td>
<td>$5,522,311</td>
</tr>
<tr>
<td>Natural Sciences and Engineering Research Council of Canada</td>
<td>$5,015,349</td>
</tr>
<tr>
<td>Research Support Fund (Government of Canada)</td>
<td>$4,984,870</td>
</tr>
<tr>
<td>Genome Quebec and Genome Canada</td>
<td>$4,673,234</td>
</tr>
<tr>
<td>Ministère de l’Économie et de l’Innovation</td>
<td>$4,671,644</td>
</tr>
<tr>
<td>CQDM</td>
<td>$2,619,068</td>
</tr>
<tr>
<td>Brain Canada</td>
<td>$2,611,580</td>
</tr>
<tr>
<td>U.S. Department of Defense</td>
<td>$2,285,793</td>
</tr>
<tr>
<td>International Progressive MS Alliance</td>
<td>$2,221,603</td>
</tr>
<tr>
<td>Amyotrophic Lateral Sclerosis Society of Canada</td>
<td>$1,538,923</td>
</tr>
<tr>
<td>Biogen Inc.</td>
<td>$1,478,372</td>
</tr>
<tr>
<td>Merck & Company, Inc.</td>
<td>$1,465,643</td>
</tr>
<tr>
<td>Canadian Cancer Society (CCS) and CCS Research Institute</td>
<td>$1,114,522</td>
</tr>
<tr>
<td>European Commission</td>
<td>$1,095,747</td>
</tr>
<tr>
<td>Terry Fox Research Institute</td>
<td>$1,083,560</td>
</tr>
<tr>
<td>Cancer Research UK</td>
<td>$976,844</td>
</tr>
<tr>
<td>Public Health Agency of Canada</td>
<td>$976,513</td>
</tr>
<tr>
<td>Bill & Melinda Gates Foundation</td>
<td>$859,515</td>
</tr>
<tr>
<td>Michael J. Fox Foundation for Parkinson’s Research</td>
<td>$824,811</td>
</tr>
<tr>
<td>MITACS</td>
<td>$747,001</td>
</tr>
<tr>
<td>Ministère de l’Éducation et de l’Enseignement supérieur</td>
<td>$633,327</td>
</tr>
<tr>
<td>Gouvernement du Québec—Other departments</td>
<td>$617,000</td>
</tr>
<tr>
<td>International Development Research Centre</td>
<td>$606,023</td>
</tr>
<tr>
<td>Weston Brain Institute</td>
<td>$601,914</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—Nature et technologies</td>
<td>$504,899</td>
</tr>
<tr>
<td>Multiple Sclerosis Society of Canada</td>
<td>$484,545</td>
</tr>
<tr>
<td>Heart & Stroke</td>
<td>$481,003</td>
</tr>
<tr>
<td>F. Hoffmann-La Roche Ltd.</td>
<td>$662,981</td>
</tr>
<tr>
<td>Cystic Fibrosis Canada</td>
<td>$463,656</td>
</tr>
<tr>
<td>Fonds de recherche du Québec—Société et culture</td>
<td>$424,417</td>
</tr>
<tr>
<td>Sanofi Genzyme</td>
<td>$410,406</td>
</tr>
<tr>
<td>MEDTEQ</td>
<td>$410,413</td>
</tr>
<tr>
<td>Foundation for Innovative New Diagnostics</td>
<td>$391,830</td>
</tr>
<tr>
<td>Costello Bequest Foundation</td>
<td>$341,181</td>
</tr>
<tr>
<td>Structural Genomics Consortium</td>
<td>$312,500</td>
</tr>
<tr>
<td>Other Industries</td>
<td>$24,603,288</td>
</tr>
<tr>
<td>Other granting agencies</td>
<td>$23,368,177</td>
</tr>
<tr>
<td>Other revenues</td>
<td>$1,291,771</td>
</tr>
</tbody>
</table>

The foundations of the MUHC include: Montreal General Hospital Foundation; McGill University Health Centre Foundation; Montreal Children’s Hospital Foundation; Cedars Cancer Foundation; and The Auxiliary of the Montreal General Hospital. Their valuable contributions to research are highlighted on pages 30-32.

We are proud of our researchers’ success in funding competitions and grateful to the wide range of organizations, including many not named here, whose support totalled $206 million this year.

Our worldwide network

Ongoing research collaborations with 61 countries
Together we have the means to leverage discoveries that improve the health of patients across their lifespan

McGill University Health Centre Foundation (MUHCF)
Support for the RI-MUHC in 2019-2020: $16.8 million
The McGill Interdisciplinary Initiative in Infection and Immunity (MI4) has received more than $4.6 million from the MUHCF Foundation for its COVID-19 Emergency Fund. This funding is driving dozens of ambitious research projects with principal investigators and researchers from the RI-MUHC, aiming to stop the spread of COVID-19 and to treat those hardest hit.

In addition to supporting the hospital’s most urgent needs, the MUHCF Foundation provided more than $1 million to support recruitment and retention of top research talent at the RI-MUHC. The Courtois Foundation made a historic $18 million donation to the MUHCF Foundation’s $50 million Fix Broken Hearts Campaign, which will transform cardiovascular care at the MUHC through cutting-edge research and innovation. This extraordinary gift will allow researchers and clinicians to jointly pioneer tomorrow’s precision medicine in cardiovascular diseases.

A boon to patients and heart research!
The MUHC Foundation funded the purchase of a flagship Cardiac Magnetic Resonance (MR) machine, the 3T GE SIGNA™ Premier from GE Medical Systems, in September 2019.

The machine, which performs cutting-edge scans of the heart and vascular system, will provide the MUHC with unprecedented expertise in heart research, while considerably enhancing patient experience.

The Montreal General Hospital Foundation (MGHF)
The MGHF is honoured to have contributed $7.7 million to research projects during the last year. Our changing world makes innovation more vital than ever as we strive to overcome new challenges. That is why the MGHF is proud to support the RI-MUHC’s new Clinical Innovation Platform (see p. 26).

In the early days of the COVID-19 crisis, the MGHF spurred innovation by launching the Code Life Ventilator Challenge in collaboration with the RI-MUHC. In just two weeks more than 2,600 individuals from 94 countries joined the sprint to design a simple, low-cost, easy-to-manufacture and easy-to-maintain ventilator, which could be deployed anywhere needed to save lives.

Thanks to our generous donors and sponsors for their vital support. codelife.ca

The Auxiliary of the Montreal General Hospital
Working closely with the Montreal General Hospital (MGH) Foundation, MGH Auxiliary volunteers raise funds for the care and comfort of patients and for medical research and medical equipment at the MGH site of the MUHC.

The Hospitality Corner at the MGH traditionally contributes tip money to the RI-MUHC. The $75,000 donation of “Tips for Research” in 2019 will help purchase a cutting-edge microscope for the new Clinical Innovation Platform at the RI-MUHC (p. 26).

Tips for Research donation, November 2019
Leucan, the CHHD Program and Division of Oncology at the Children’s work collaboratively with provincial and national partners on clinical trials that provide hope for a better future to children and teenagers stricken with cancer. Thank you, Leucan!

Cedars Cancer Foundation

Thirty riders set out on the third annual Cedars Ride for Hope and Gratitude in the Eastern Townships, raising over $125,000 in support of the Cedars-Laneuville Cell Therapy and Immunotherapy Initiative for blood cancers led by Dr. Pierre Laneuville. Funds raised allow doctors, researchers and patients to benefit from this promising area of research in the fight against cancer.

“Hope and gratitude are the words I live by every day,” explained Rob Callard, cancer survivor and the driving force behind this epic ride. “They are a constant reminder of the hope that we conquer this complicated disease, and the gratitude for life and for the wonderful people I have met who surround me in my life.”