Breadcrumb

null Brian Chen, PhD

Scientist, RI-MUHC, Montreal General Hospital site

Brain Repair and Integrative Neuroscience (BRaIN) Program

Centre for Translational Biology

Associate Professor, Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University

Department of Medicine, Division of Neurology, MUHC

 

Keywords


neural circuit formation • neural development • synaptic targeting • synaptic plasticity

Research Focus


My research focuses on principles underlying how brains wire up complex circuits with extreme precision. To uncover the different molecules and strategies cells use to form such highly organized neural circuits, my lab combines high-resolution imaging techniques with advanced molecular genetics in different model systems to look inside living animals while their neurons form synapses. My research uses invertebrate organisms to identify underlying genetic mechanisms, and vertebrates to investigate common molecular rules. This research will provide insight into how the brain's wiring diagram is encoded within a genome, and how these may go awry in common brain disorders.

Selected Publications


Click on Pubmed to see my current publications list

  • Dos Santos JV, Yu RY, Terceros A, Chen BE. FGF receptors are required for proper axonal branch targeting in Drosophila. Mol Brain. 2019 Oct 24;12(1):84. doi: 10.1186/s13041-019-0503-y. PMID: 31651328.

  • Lo CA, Chen BE. Parental allele-specific protein expression in single cells In vivo. Dev Biol. 2019 Oct 1;454(1):66-73. doi: 10.1016/j.ydbio.2019.06.004. Epub 2019 Jun 11. PMID: 31194972.

  • Lo, C.A., Kays, I., Emran, F., Lin, T.S., Cvetkovska, V., Chen, B.E.  2015. Quantification of Protein Levels in Single Living Cells. Cell Reports 13: 2634-2644.

  • Kays, I., Cvetkovska, V., Chen, B.E. Structural and functional analysis of single sensory neurons in Drosophila melanogaster using lipophilic dye labeling and behavior for hard-wired neural connectivity analysis. 2014.

  • Cvetkovska, V., Hibbert, A.D., Emran, F., Chen, B.E. 2013. Overexpression of Down Syndrome Cell Adhesion Molecule impairs precise synaptic targeting. Nature Neuroscience 16: 677-682. PMCID: PMC3954815.